当前位置:首页 > 比赛题解 > CSP-J 2024扑克牌问题:贪心算法的经典应用

CSP-J 2024扑克牌问题:贪心算法的经典应用

2天前比赛题解36

截图未命名.jpg CSP-J 2024扑克牌问题:贪心算法的经典应用 区间动态规划 博弈论问题 记忆化搜索 CSP-J真题解析 扑克牌算法 第1张

题目重述与分析

给定n张扑克牌,每张牌有分值a_i。玩家轮流取牌,每次可从两端取一张,最终获得取牌分值和。双方均采取最优策略,求先手能获得的最大分数差。

核心考点

算法设计思路

  1. 状态定义

    • dp[l][r]表示区间[l,r]内先手能获得的最大分差

  2. 转移方程

    dp[l][r] = max(a[l] - dp[l+1][r], a[r] - dp[l][r-1])
  3. 边界条件

    • 当l=r时,dp[l][r]=a[l]

完整C++实现

#include <iostream>
#include <cstring>
using namespACe std;

const int N = 1010;
int a[N], memo[N][N];

int dfs(int l, int r) {
    if (l > r) return 0;
    if (memo[l][r] != -1) return memo[l][r];
    
    int takeLeft = a[l] - dfs(l+1, r);
    int takeRight = a[r] - dfs(l, r-1);
    
    return memo[l][r] = max(takeLeft, takeRight);
}

int main() {
    int T;
    cin >> T;
    while (T--) {
        int n;
        cin >> n;
        for (int i = 0; i < n; i++) cin >> a[i];
        
        memset(memo, -1, sizeof memo);
        cout << dfs(0, n-1) << endl;
    }
    return 0;
}

关键代码解析

  1. 记忆化搜索

    • memo数组存储已计算区间结果

    • 初始值为-1表示未计算

  2. 递归逻辑

    • takeLeft表示取左端后的净收益

    • takeRight表示取右端后的净收益

  3. 时间复杂度

    • O(n²) 通过记忆化避免重复计算



原创内容 转载请注明出处

分享给朋友:

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。